An analytical approach to evaluate the performance of graphene and carbon nanotubes for NH3 gas sensor applications

نویسندگان

  • Elnaz Akbari
  • Vijay Kumar Arora
  • Aria Enzevaee
  • Mohamad T Ahmadi
  • Mehdi Saeidmanesh
  • Mohsen Khaledian
  • Hediyeh Karimi
  • Rubiyah Yusof
چکیده

Carbon, in its variety of allotropes, especially graphene and carbon nanotubes (CNTs), holds great potential for applications in variety of sensors because of dangling π-bonds that can react with chemical elements. In spite of their excellent features, carbon nanotubes (CNTs) and graphene have not been fully exploited in the development of the nanoelectronic industry mainly because of poor understanding of the band structure of these allotropes. A mathematical model is proposed with a clear purpose to acquire an analytical understanding of the field-effect-transistor (FET) based gas detection mechanism. The conductance change in the CNT/graphene channel resulting from the chemical reaction between the gas and channel surface molecules is emphasized. NH3 has been used as the prototype gas to be detected by the nanosensor and the corresponding current-voltage (I-V) characteristics of the FET-based sensor are studied. A graphene-based gas sensor model is also developed. The results from graphene and CNT models are compared with the experimental data. A satisfactory agreement, within the uncertainties of the experiments, is obtained. Graphene-based gas sensor exhibits higher conductivity compared to that of CNT-based counterpart for similar ambient conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrochemical Sensing of H2S Gas in Air by Carboxylated Multi-walled Carbon Nanotubes

The electrochemical sensor for detecting hydrogen sulfide was fabricated. H2S gas molecules pass through polytetrafluoroethylene membrane with 0.22 mm pore size. Carboxylated multi-walled carbon nanotubes (MWCNTs-COOH) were used to fabricate working and counter electrodes. It can be seen from Field Emission Scanning Electron Microscopy (FESEM) images of the working electrode that...

متن کامل

Recent advances in electrochemical biosensor and gas sensors based on graphene and carbon nanotubes (CNT) - A review

Graphene and carbon nanotubes (CNTs) based sensors have been extensively studied because of their applications in the detection of various chemicals and biomolecules. From an application point of view, high sensitivity and selectivity is a promising tool for fast detection of gas leakage and early diagnosis of diseases for health care. In the present review article, we provide a comprehensive o...

متن کامل

The Molecular Mechanics Model of Carbon Allotropes

Carbon can form numerous allotropes because of its valency. Graphene, carbon nanotubes,capped carbon nanotubes, buckyballs, and nanocones are well-known polymorphs of carbon.Remarkable mechanical properties of these carbon atoms have made them the subject of intenseresearch. Several studies have been conducted on carbon nanotubes or graphene. In the presentstudy, the molecular mechanics method ...

متن کامل

Analytical quantum current modeling in GNSFET

Carbon nanoscrolls (CNSs) belong to the same class of carbon-based nanomaterialsas carbon nanotubes. As a new category of quasi one dimensional material Graphene Nanoscroll (GNS) has captivated the researchers recently because of its exceptional electronic properties like having large carrier mobility. GNS shape has open edges and no caps unlike Single Wall Nanotubes (SWNTs) which are wou...

متن کامل

A Wireless, Passive Carbon Nanotube-Based Gas Sensor

A gas sensor, comprised of a gas-responsive multiwall carbon nanotube (MWNT)—silicon dioxide (SiO2) composite layer deposited on a planar inductor-capacitor resonant circuit is presented here for the monitoring of carbon dioxide (CO2), oxygen (O2), and ammonia (NH3). The absorption of different gases in the MWNT-SiO2 layer changes the permittivity and conductivity of the material and consequent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014